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It is known that the Green’s function for nondissipative acoustic or elastic wave propagation can be extracted
by correlating noise recorded at different receivers. This property is often related to the invariance for time
reversal of the acoustic or elastic wave equations. The diffusion equation is not invariant for time reversal. It
is shown in this work that the Green’s function of the diffusion equation can also be retrieved by correlating
solutions of the diffusion equation that are excited randomly and are recorded at different locations. This
property can be used to retrieve the Green’s function for diffusive systems from ambient fluctuations. Potential
applications include the fluid pressure in porous media, electromagnetic fields in conducting media, the diffu-
sive transport of contaminants, and the intensity of multiply scattered waves.
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I. INTRODUCTION

The Green’s function for acoustic or elastic waves can be
extracted by cross correlating recorded waves that are ex-
cited by a random excitation; see Ref. �1�, for a tutorial.
Derivations of this principle have been presented based on
normal modes �2�, on representation theorems �3–5�, on
time-reversal invariance �6,7�, and on the principle of sta-
tionary phase �8–10�. This technique has found applications
in ultrasound �11–13�, crustal seismology �14–18�, explora-
tion seismology �19,20�, structural engineering �21,22�, and
numerical modeling �23�. Recently, the extraction of the
Green’s function by cross correlation has been derived for
general coupled systems of linear equations �24�.

The principle of extracting the Green’s function of a sys-
tem from ambient fluctuations creates the possibility to re-
trieve the impulse response of a system without using con-
trolled point sources. This impulse response can be used for
imaging, tomography, or other methods to determine the
properties of the medium. For example, models of the crust
in California have been constructed using surface wave to-
mography based on microseismic noise �15,18�. The autocor-
relation of ambient seismic noise has been used for daily
monitoring of fault zones �25� and volcanoes �26�. The
Green’s function extracted from ambient noise can also be
used to model the response of a system to a prescribed exci-
tation without knowing the in situ properties of the system.

The extraction of the Green’s function from ambient noise
has been described extensively for wave propagation of
acoustic or elastic waves without intrinsic attenuation �e.g.,
�1–10��. In the absence of intrinsic attenuation, the wave
equation is invariant for time reversal, and several deriva-
tions of the reconstruction of the Green’s function are indeed
based on time-reversal invariance �6,7,20�.

Many physical systems are not invariant under time rever-
sal. Intrinsic attenuation breaks the symmetry for time rever-
sal for acoustic and elastic wave propagation. Electrical con-
ductivity breaks the time-reversal symmetry of Maxwell’s
equations. It has been shown theoretically �27� and observa-

tionally �21,22� that the impulse response of attenuating
waves can be retrieved from ambient fluctuations.

Time-reversal invariance is, however, not essential for re-
trieving the Green’s function from ambient noise. This can
be seen by considering the diffusion equation

�p�r,t�
�t

= � · „D�r� � p�r,t�… + q�r,t� , �1�

where the diffusion constant D may depend on position r.
The diffusion equation is not invariant for time reversal be-
cause the operation t→−t changes the sign of the first term.
Equation �1� is of practical importance because it describes
conductive heat transport, diffusive transport of tracers and
contaminants, fluid flow in porous media �28�, electromag-
netic waves in conducting media �29�, and the energy trans-
port of multiply scattered waves, e.g., �30�.

The derivation in this work is applicable to the frequency
domain, and the following Fourier convention is used:
p�r , t�=�p�r ,��exp�−i�t�d�. With this convention, the dif-
fusion equation is, in the frequency domain, given by

i�p�r,�� + � · „D�r� � p�r,��… = − q�r,�� . �2�

Time reversal corresponds, in the frequency domain, to com-
plex conjugation. The time-reversed diffusion equation is
thus given by

− i�p*�r,�� + � · „D�r� � p*�r,��… = − q*�r,�� , �3�

where the asterisk denotes complex conjugation. The sign
difference in the first terms of expressions �2� and �3� is due
to the lack of time-reversal invariance of the diffusion equa-
tion.

It is shown here that the Green’s function for the diffusion
equation can be retrieved by correlating noise recorded at
several locations in a diffusive system. One application of
this technique is monitoring flow in porous media. We there-
fore refer to the solution of the diffusion equation as pres-
sure, but the results are equally valid for other diffusive sys-
tems. In the following, all expressions are given in the
frequency domain, and the frequency dependence is not
shown explicitly.*E-mail address: rsnieder@mines.edu
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II. REPRESENTATION THEOREMS
OF THE CONVOLUTION AND

CORRELATION TYPE

Following Fokkema and van den Berg �31,32�, we con-
sider representation theorems of the convolution and corre-
lation types by using expressions �2� and �3� for two solu-
tions pA and pB with source terms qA and qB, respectively.
The representation theorem of the convolution type is ob-
tained by computing ��pBEA− pAEB�dV, where EA denotes
Eq. �2� for state A, and where ��¯�dV denotes an integration
over volume V. This gives

� �pB � · �D � pA� − pA � · �D � pB��dV

=� �pAqB − pBqA�dV . �4�

Note that in the subtraction the i�p terms cancel. Applying
an integration by parts to the left-hand side of expression �4�
and using Gauss’s theorem gives

� D�pB � pA − pA � pB� · dS =� �pAqB − pBqA�dV , �5�

where the integral ��¯� ·dS is over the surface that bounds
volume V.

A representation theorem of the correlation type can be
obtained by evaluating ��pB

*EA− pAQB�dV, where QB denotes
Eq. �3� for state B. Carrying out an integration by parts gives

� D�pB
* � pA − pA � pB

*� · dS + 2i�� pApB
*dV

=� �pAqB
* − pB

*qA�dV . �6�

Note that now the i� terms in expressions �2� and �3� do not
cancel, but combine to give the volume integral in the left-
hand side. The presence of this term results from the lack of
invariance of time-reversal of the diffusion equation.

In the following integration over all space is used. The
contribution of the surface integral vanishes because the so-
lution of the diffusion equation p�r ,�� vanishes exponen-
tially as r→�. Therefore, the representation theorems �5�
and �6� reduce to

� �pAqB − pBqA�dV = 0 �7�

and

� �pAqB
* − pB

*qA�dV = 2i�� pApB
*dV . �8�

The contribution of the surface integral also vanishes for a
finite volume in case the solution satisfies either Dirichlet
conditions �p=0�, Neumann conditions ��p /�n=0�, or mixed
boundary conditions ��p /�n+ap=0� at the surface that
bounds the volume.

III. REPRESENTATION THEOREMS
AND GREEN’S FUNCTIONS

The Green’s function for the diffusion equation is the so-
lution to Eq. �2� when the forcing is a � function,

i�G�r,r0� + � · „D�r� � G�r,r0�… = − ��r − r0� . �9�

Setting qA�r�=��r−r0� in expression �7� implies that pA�r�
=G�r ,r0�. For this choice of qA, expression �7� reduces to

p�r� =� G�r,r0�q�r0�dV0, �10�

where the subscripts B are dropped. Alternatively, setting

qA,B�r� = ��r − rA,B� �11�

implies that

pA,B�r� = G�r,rA,B� . �12�

For this choice of the states A and B, expression �7� reduces
to the reciprocity relation,

G�rB,rA� = G�rA,rB� . �13�

Inserting the states �12� into expression �8� gives

G�rB,rA� − G*�rA,rB� = 2i�� G�r,rA�G*�r,rB�dV .

�14�

Using reciprocity, this expression can also be written as

G�rA,rB,�� − G*�rA,rB,�� = 2i�� G�rA,r,��G*�rB,r,��dV .

�15�

The left-hand side of Eq. �15� corresponds, in the time do-
main, to the superposition of the Green’s function and the
time-reversed Green’s function. In Sec. IV, we consider how
this superposition can be retrieved from the cross correlation
of the pressure generated by uncorrelated sources.

IV. RETRIEVING THE GREEN’S FUNCTION

In order to show how the Green’s function can be ex-
tracted from the correlation of solutions generated by ran-
dom sources, let us consider spatially uncorrelated sources
with power spectrum 	q���	2 that does not depend on loca-
tion,


q�r1,��q*�r2,��� = ��r1 − r2�	q���	2, �16�

where the angular brackets denote the expectation value. In
practical applications, this expectation value is usually re-
placed by using several nonoverlapping time windows �e.g.,
�33,26��. Multiplying Eq. �15� with 	q���	2, the volume inte-
gral in that expression can be written as
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	q���	2� G�rA,r�G*�rB,r�dV

=� G�rA,r1���r1 − r2�	q���	2G*�rB,r2�dV1dV2

=� G�rA,r1�
q�r1,��q*�r2,���G*�rB,r2�dV1dV2

= 
„� G�rA,r1�q�r1,��dV1…„� G�rB,r2�q�r2,��dV2…
*� .

�17�

When we use this result and expression �10�, Eq. �15� after
multiplication with 	q���	2 is given by

„G�rA,rB,�� − G*�rA,rB,��…	q���	2 = 2i�
p�rA,��p*�rB,��� ,

�18�

where p�r ,�� is the pressure at location r due to the random
forcing q�r ,��.

Equation �18� states that the superposition of the Green’s
function G�rA ,rB ,�� and its time-reversed version is, after
multiplication with the power spectrum of the excitation,
equal to the correlation of the random fields at locations rA
and rB, respectively. The prefactor 2i� corresponds, in the
time domain, with −2d /dt. Since multiplication in the fre-
quency domain corresponds, in the time domain, to convo-
lution expression �19�, in the time domain, is given by

�G�rB,rA,t� − G„rB,rA,− t�… * Cq�t�

= − 2
d

dt

p�rA,t� � p�rB,t�� �19�

where the asterisk denotes convolution, � denotes correla-
tion, and Cq�t� is the autocorrelation of q�t�.

V. DISCUSSION

The Green’s function of the diffusion equation can be
retrieved by cross correlating measurements of a diffusive
system that is excited by random noise. Since the diffusion
equation is not invariant for time reversal, this shows that
invariance for time reversal is not essential for the retrieval
of the Green’s function by cross correlation.

For elastic and acoustic waves, the Green’s function can
be extracted from waves that are excited randomly at the
surface that surrounds the volume �3,5�. This is not the case
for the diffusion equation. For a volume of radius R, the
surface area grows with R2, but for a homogeneous medium
the solution of the diffusion equation varies with the radius
as R−1exp�−�� /2DR�. The contribution of the surface inte-
gral therefore depends on the radius of the volume, and the
derivation shown here holds for an infinite volume �R→ � �,
or for a finite volume when Dirichlet, Neumann, or mixed
boundary conditions hold at the surface that bounds the vol-

ume. In contrast to the retrieval of the Green’s function for
nonattenuating acoustic or elastic waves, where one needs
random sources on a surface that bounds the volume, one
needs random sources throughout the volume for the re-
trieval of the Green’s function for the diffusion equation.

The theory presented here provides an example that time-
reversal invariance is not required for the extraction of the
Green’s function from ambient fluctuations. The diffusion
equation governs physical systems of practical importance,
and the derivation presented here makes it possible to re-
trieve the impulse response of diffusive systems from mea-
sured fluctuations.

In this work, the phrase pressure is used for the solution
of the diffusion equation because the pore pressure in a po-
rous medium follows the diffusion equation. The theory of
this work makes it possible to retrieve the Green’s function
for fluid flow in an aquifer or hydrocarbon reservoir from
recorded pressure fluctuations. This Green’s function can be
used to estimate parameters such as hydraulic conductivity
and to model the fluid transport in the subsurface without
explicit knowledge of the in situ hydraulic conductivity.
Similarly, the impulse response for the diffusive transport of
contaminants can be retrieved from observations of ambient
fluctuations in the concentration. The Green’s function thus
obtained can then be used to predict the diffusive transport of
a localized release of the contaminant.

Electromagnetic fields in a conducting media satisfy the
diffusion equation. This has been used in the magnetotelluric
method where the ambient fluctuations in the electric and
magnetic fields observed at one location are used to deter-
mine the electrical conductivity �34�. The theory presented
here makes it possible to retrieve the Green’s function for
electromagnetic fields for noncoincident points from ob-
served electromagnetic fluctuations.

The intensity of multiply scattered waves satisfies, for late
times, the diffusion equation. Controlled intensity fluctua-
tions of multiply scattered waves have been used to create
images of the spatial distribution of the diffusion constant.
This has found application in medical imaging, e.g., �35�.
Instead of using controlled, spatially localized, sources for
the intensity of scattered waves, one may use the theory of
this work to use random spatially distributed sources instead.

As always, the application of the theory to these, and
other, applications faces implementation issues. The assump-
tion that the sources of the ambient fluctuations have a ho-
mogeneous spatial distribution may not be satisfied in prac-
tical applications. For applications where this condition is
satisfied, the theory can be used to extract the impulse re-
sponse of diffusive systems without using a controlled, local-
ized, source.
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